AI-C-Fe (Aluminum-Carbon-Iron)

V. Raghavan

The early literature on this ternary system was reviewed by [1987Rag], who presented for Al-rich alloys, a liquidus projection, a reaction scheme, and four isothermal sections at 1250, 1100, 1000 and 25 °C. A thermodynamic evaluation by [1991Har] presented a tentative reaction scheme for the entire composition range, a computed liquidus projection, and isothermal sections at 2000, 1850, 1700, 1300, 1200, 1100, 1000, and 800 °C. An update by [1993Rag] reviewed the results of [1991Har]. A second update by [2002Rag] reviewed the detailed experimental investigation of this system by [1995Pal]. Recently, [2004Oht] carried out a new thermodynamic analysis covering the whole system. The more recent experimental results of [1995Pal] were used in the optimization. The formation energy of the ternary κ phase was estimated from first principle band energy calculations.

Binary Systems

In the Al-C phase diagram, Al_4C_3 is of fixed composition and has the $D7_1$ -type of rhombohedral structure. In the Fe-Al phase diagram, the solid solution γ based on facecentered cubic (fcc) Fe is restricted by a loop. The solid solution based on the body-centered cubic (bcc) Fe (α) exists in both the disordered (A2) and ordered (B2 and $D0_3$) forms. The $\alpha(A2) \rightarrow B2$ transition is second order down to ~ 600 °C; below that a two-phase field of ($\alpha + B2$) intervenes indicative of a first-order transition. Apart from the high temperature phase ε , there are three intermediate phases in the system with restricted ranges of homogeneity: FeAl₂(triclinic), Fe₂Al₅ (orthorhombic) and FeAl₃ or Fe₄Al₁₃ (monoclinic). The stable Fe-C phase diagram has a peritectic reaction at 1493 °C, where the γ (fcc) forms from *L* and δ (bcc). At 1153 °C, a eutectic reaction yields γ + graphite (gr). The stable eutectoid reaction occurs at 740 °C, yielding α (bcc) + gr.

Computed Ternary Phase Equilibria

The ternary compound Fe₃AlC (κ) has the perovskitetype of structure and was modeled by [2004Oht] with three sublattices: (Fe,Al)₃(Fe,Al)₁(C,Va)₁. Carbon resides in the octahedral void at the body center of the *L*1₂-type lattice. The formation energy of κ in the ground state was evaluated using the Full Potential Linearized Augmented Plane Wave (FLAPW) method. The details of this method are given by [2004Oht]. The calculated cohesive energy was modified by considering the interactions between atoms on the same sublattice. The entropy term was estimated using experimental phase boundaries. The calculated homogeneity range of κ at 1200 °C is Fe_{2.8-2.9}Al_{1.1-1.2}C_{0.7}[2004Oht].

In the absence of data on the extension of the $A2 \rightarrow B2$ transition into the ternary region, the word 'bcc' (instead of β used by [2004Oht]) is used here to denote the disordered and ordered forms. The solubility of C in bcc computed by [2004Oht] is significantly lower than that found by

Fig. 1 Al-C-Fe computed vertical section at 5 at.% C [2004Oht], compared with the experimental data of [1995Pal]

Fig. 2 Al-C-Fe computed vertical section at 10.5 at.% C [2004Oht], compared with the experimental data of [1995Pal]

[1995Pal]. The computed isothermal sections at 1200, 1000 and 800 °C (not shown here) are in agreement with those experimentally determined by [1995Pal]. In Fig. 1 and 2, the computed vertical sections of [2004Oht] at 5 and 10.5 at.% C are compared with the experimental results of [1995Pal]. The agreement is generally satisfactory, except near the γ region.

References

1987Rag: V. Raghavan, The Al-C-Fe (Aluminum-Carbon-Iron) System Phase Diagrams of Ternary Iron Alloys ASM International, Materials Park, OH, 1987, p 89-97

- 1991Har: K.C. Hari Kumar and V. Raghavan, A Thermodynamic Analysis of the Al-C-Fe System, J. Phase Equilib., 1991, 12(3), p 275-286
- 1993Rag: V. Raghavan, Al-C-Fe (Aluminum-Carbon-Iron), J. Phase Equilib., 1993, 14(5), p 615-617
- 1995Pal: M. Palm and G. Inden, Experimental Determination of Phase Equilibria in the Fe-Al-C System, *Intermetallics*, 1995, 3(6), p 443-454
- 2002Rag: V. Raghavan, Al-C-Fe (Aluminum-Carbon-Iron), J. Phase Equilib., 2002, 23(6), p 508-510
- 2004Oht: H. Ohtani, M. Yamano, and M. Hasebe, Thermodynamic Analysis of the Fe-Al-C Ternary System by Incorporating *ab initio* Energetic Calculations into the CALPHAD Approach, *ISIJ Int.*, 2004, 44(10), p 1738-1747